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SUMMARY 

The present paper reports  an investigation of third-order systems 
under contactor control. The t ransfer  function of the uncontrolled 
system has one r e a l  and two conjugate complex poles and may have zeros. 
In  general, it i s  assumed tha t  a l l  poles have negative real parts;  huw- 
ever, cases with posi t ive real pa r t s  of t he  cmplex poles are included. 
The switching function depends on error  and e r ro r  derivatives,  the e r r o r  
being the difference between the  input and output of the  system. The 
major portion of t h i s  report  i s  devoted t o  systems without zeros i n  the 
t ransfer  function; however, systems with zeros i n  the  t ransfer  function 
are  discussed b r i e f ly .  

It i s  s h a m  t h a t  fo r  an i n i t i a l  e r ror  (or  a s t ep  input) the coef- 
f i c i e n t s  of a l i nea r  switching function 

kl and $ are coeff ic ients  and e, e', and e" a re  the e r r o r  and 

e r ro r  derivatives,  respectively) can be chosen i n  such a way t h a t  the 
system t r a j ec to ry  becomes optimum, tha t  is, the or igin (or  the s t e p  
height) can be reached i n  minimum time without chat ter .  
statement is  val id  only f o r  an i d e a l  system wlth perfect  relays and no 
t ransport  delays. 

F = e + k le '  + k2e" (where 

Obviously, t h i s  

The dependence of the coeff ic ients  of the e r ro r  der ivat ives  kl 
and k2 on i n i t i a l  e r ro r  or s tep  height f o r  fixed system parameters 
has been studied theore t ica l ly  (behavior of the  system t r a j ec to ry  i n  
the phase space) and wlth the help of an m a l o g  cmputer .  
both methods agree w e l l .  

Results fran 

I n  addition, the dependence of kl a,nd k2 on the system param- 
It appears t h a t  average switching-function e t e r s  has been considered. 

coefficients assure good or quasi-optimum control  f o r  systems with 
varying parameters as long as the  uncontrolled systems are stable. 
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Unstable systems can be s a t i s f a c t o r i l y  controlled; however, one should 
not attempt t o  use the just-mentioned average k l  and k2 values. - 

"he response of controlled systems t o  time-varying inputs has been 
studied also. In  t h i s  case a small steady-state e r ro r  occurs when the  
control  coeff ic ients  are chosen i n  such a way t h a t  the re lay  i s  working 
i n  the  chatter region. 

In  the l a s t  sect ion of the paper, first s tudies  of systems with zeros 
i n  the t ransfer  function are described. A l i nea r  switching function of 
the type F = e + kle '  + k2e" i s  bound t o  become discontinuous through 
the influence of the  zeros i n  the t ransfer  f'unction of the  uncontrolled 
system. If t h i s  type of switching function is  s t i l l  used, a new type of 
cha t te r  occurs i n  addition t o  the well-known after-end-point cha t te r .  
The general third-order problem is s t i l l  being studied. 

INTRODUCTION 

"he investigation of contactor control  systems has been confined 
t o  par t icular  problems f o r  qui te  some time. The nonlinearity of these * 
systems f o r  the most pa r t  prevents obtaining general r e s u l t s  which 
can be exploited immediately f o r  p rac t i ca l  design purposes. 
fore  can follow up d e f i n i t e  trends i n  studying such systems. 

One there- - 

Since the d i f f i c u l t y  of t heo re t i ca l  treatment depends strongly on 
the poles of the t ransfer  function of an uncontrolled system, a f i n a l  
divis ion of problems i s  given by separating the systems i n t o  those with 
real poles only, cmplex poles only, or real and canplex poles. There 
are a number of in te res t ing  theorems established fo r  systems with r e a l  
poles; unfortunately, however, many of the basic  dynamic systems, 
especially a i r c r a f t  and missiles,  represent systems with complex or can- 
plex ard real poles. As long as one i s  s a t i s f i e d  with simpliming the  
description of such a system t o  the degree t h a t  a t r ans fe r  f'unction of 
second order i s  obtained, the  mathematical treatment i s  ra ther  simple. 
A number of papers have been devoted t o  t h i s  problem. 
depending on a l inea r  combination of the sensed deviation and devi- 
a t ion  derivative and the so-called optimum switching have been inves- 
t iga ted  fo r  t ransfer  functions with complex poles and without zeros. 
Reference 1 reports  an investigation of the  influence of zeros. 
ular third-order systems with two  complex and one real root and no 
zeros have been preliminarily investigated and reported i n  references 2 
and 3 .  

Switching 

Par t ic -  

The present report  i s  devoted t o  a more cmple te  invest igat ion of 
the  third-order system with two complex poles without zeros and a pre- 
liminary invest igat ion of the influences of zeros. I n  general, so-called 
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l i nea r  switching i s  investigated, which i s  a switching depending upon a 
l i nea r  cmbinat ion of the  sensed variables.  In  addition, t he  poss ib i l i t y  
of obtaining optimum switching by using l i nea r  switching functions i s  
investigated.  Optimum switching for a zero-seeking system, f o r  instance, 
means reaching zero with a limited number of switchings and without 
cha t te r .  

Since maqy of the systems t o  be controlled are systems with varying 
parameters (influence of Mach numbers i n  a i r c ra f t s ,  f o r  example), the 
design of the contactor control  should be such that the control  mechanism 
i s  e f f i c i e n t  even i f  these parameters change through a given range. 

The theo re t i ca l  approach t o  the problem is  based on a phase-space 
representation of the motion, and theore t ica l  r e s u l t s  are confirmed and 
extended by analog-computer s tudies .  

This invest igat ion was conducted at Stanford University under the  
sponsorship and with the f inanc ia l  assistance of t he  National pdvisory 
Committee f o r  Aeronautics. The authors wish t o  thank D r .  A. M. Peterson 
of the E l e c t r i c a l  Engineering Department of Stanford University f o r  his  
continued i n t e r e s t  and his  most helpf’ul advice on the  electronic  problems 
enc,mm+zred during this investigation. 

A1,A2 constants i n  equation ( A 3 )  

0 

%,El, %,Z3,&,cl,g2 

bl,bg 

coeff ic ients  i n  d i f f e r e n t i a l  equation of con- 
t ro l l ed  system - 

coeff ic ients  i n  equation (39) ,  bl/<o and bZ/go, respectively 

D damping coef f ic ien t  

IF damping coef f ic ien t  of after-end-point motion 

d coordinate i n  phase space; see equation ( 3 2 )  

e error ,  x - y 

El, E2, % phase-space coordinates 
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F 

P 

kl& 

K* 

switching function 

modified switching function 

Coefficients of e r ro r  der ivat ives  i n  switching flmction 

defines angle between switching plane and E1E2 plane; see 
equations (33) and (34) 

21,22923 coeff ic ients  of switching plane i n  %E E phase space 2 3  

constant 

amplitude of contactor output; see equation (6) 

d i f f e r e n t i a l  operator, d/dT 

input var i ab l e  

height of s tep  input; a l so  used f o r  amplitude of s inusoidal  
input 

output variable 

Laplace's transform of output vmiable  

constant fac tor  i n  equation (A5) 

r ea l  pole of uncontrolled system 

EO 6 = 6 I- 
"3 

output of contactor, 

Laplace's transform of contactor output 

phase constant 

phase constant i n  m t h  i n t e rva l  

roots of d i f f e r e n t i a l  equation f o r  a f te rend-poin t  motion 

v = {ci? 

an = cos'l(-D-q 

u = cos'l(-D) 
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7 time variable 

T* 

Trn 

t i m e  variable; see equation (A3) 

t i m e  variable i n  m t h  interval; Tm = 0 at start of i n t e rva l  

T i  dumy time variable 

w 

A,(. . .) 
b(. . . )  

A*(. . .) 
Subscripts: 

angular frequency of sinusoidal input 

abrupt change of a variable a t  switching ins tan t  

impulse of variable a t  switching instant  

combination of discontinuity and impulse; see equation (44) 

&V average values 

m mth in t e rva l  

0 i n i t i a i  vaiues 

( 11,( IttA time der ivat ives  

sgn( ) algebraic s ign of a r e a l  quantity; sgn f = f/lfl 

BEHAVIOR OF THIRD-ORDER ZERO-SEEKING CONTACTOR 

CONTROL SYS'IEMS I N  PHASE SPACE 

I n  the present sect ion the equation of motion of a general th i rd-  
order system is presented and the  motion i n  phase space i s  described 
and discussed. 

Equations of Third-Order System 

The system t rea ted  i n  th i s  report is  of in te res t ,  f o r  example, i n  
s tudies  of the longitudinal motion of an a i r c r a f t  under cer ta in  simpli- 
f'ying assumptions. The equation of the system i s  given by 

where y and are the output variable and the outpu& of the  con- 
tactor ,  the primes indicate  derivatives with respect t o  t i m e ,  and t he  
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L - - 
coeff ic ients  an and bn are constants. I n  Laplace's transform, equa- 
t i o n  (1) is expressed as follows: 

L 

iQ* + blP + bo 
Y(P) = 8" (P) 

(The Laplace transform can be applied t o  equation (1) i n  an in t e rva l  
between two switchings. 
l i nea r  d i f f e ren t i a l  equation.) 

In  such an in t e rva l  the motion i s  governed by a 

There have been a great  number of papers writ ten about contactor 
control systems, but most of them discuss the  systems with real poles 
and l i t t l e  has been wri t ten f o r  the case with a real  pole and two con- 
jugate poles. I n  t h i s  section the  la t ter  system i s  considered f o r  the  
case iJ2 = G1 = 0.  

The denominator of equation (2) can be writ ten as a product of a 
second-order and a f i rs t -order  t e r m .  Therefore, equation (2)  with 
b2 = b l  = 0 
- - 

yie lds  

(P + 7)(P2 + 2DP + 1) 

where 7 i s  a r e a l  pole and D < 1 because, as indicated i n  the  in t ro-  
duction, only third-order systems with two complex roots  are considered 
i n  t h i s  report .  

Equation ( 3 )  can be rewrit ten as 

Y(P) = 5* (P) 
P3 + (7 + 2D)P2 + (2D7 + l ) P  + 7 

and the  o r ig ina l  equation (1) takes the form 
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variable  
values N and (-m) according t o  the sign of the  input. That means 

i s  the output of a contactor and takes only two d i scre te  - 

50 6 = (R sgn F), = N sgn F 
a3 

where F i s  a fhnction of the e r ror  e and i t s  derivatives 

F = F(e,e',e") 

The e r ror  e i s  given by 

e = x - y  ( 8 )  

The type of switching function considered i s  a l inear  combination of the  
e r ro r  and i t s  derivatives 

The block diagram of the contactor control system described above i s  
shown i n  figure 1. 

Substi tution of equation (8) into equation ( 5 )  gives an equation 
describing the  system i n  terms of error and i ts  derivatives.  

e r r '+  (7  + 2D)e" + (2D7 + l ) e t  + 7e 

= x"' + (7 + 2D)x" t (2D7 + 1 ) x '  + yx - N sgn F (10) 

It should be mentioned tha t  the  variables e, e ' ,  and e'' are continuous 
a t  the switching points.  However, equations ( 5 )  and (10) show c lear ly  
t h a t  
the  der ivat ive of the chosen switching function dF/d.r i s  discontinuous 
a t  the  switching points.  
points" i n  an idea l  system as described i n  reference 4 on page 32. 

e"' i s  discontinuous a t  the  switching points,  which means t h a t  

This indicates the poss ib i l i ty  of reaching "end 

For a zero-seeking system 

and equation (10) becomes 

e"'+ (7 + 2D)e" + (2D7 + l ) e t  + 7e = -N sgn F 
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Equation (12) can be solved for the mth interval between switchings since 
6 = N sgn F is a constant. 

A 

The error and its derivatives are given by 

where D = -cos u, v = i i 7 7  = sin u, and c h ,  c a ,  and Em are 
constants determined by the initial conditions for the interval. 

Since switching is initiated by the condition 

F = 0 = e + kle' + k2e" 

the time of switching is determined by the solution of a transcendental 
equation. However, if the motion is described by a trajectory in phase 
space (coordinates e, e', and e") all switching points lie in a plane. 

The description of the motion by phase-space variables has proven 
to be very convenient for a second-order system. In that case the motion 
can be described in a phase plane, and the switching points lie on a 
straight line if a linear switching function is used. The representation 
of a third-order system in phase space is still very convenient when cer- 
tain linear combinations of e, e', and e" are used as phase variables. 

Introduction of New Phase Coordinates 

The suggested set of transformed coordinates is 

El = ye' + e'' 

E2 = ye + e' 

E3 = e'' + 2De' + e 
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A s  shown i n  f igure 2, the phase space i s  constructed with a s e t  o f  coor- 
dinates  E 1  and E2 which a re  skewed with respect t o  each other and E3 
which i s  perpendicular t o  the E1E2 plane. 

Substi tution of the e r ror  and its derivatives in to  equations (l7), 
(18), and (19) gives 

E 2  = C h e e D T r n  [I. cos (V., + E ~ )  + cos (mm + Em + a)] - N sgn F (21) 

The equation of the switching plane i n  t h i s  new phase space i s  given by 

where 

-1 + k l 7  - kpr2 

-72 t 2D7 - 1 
23 = 
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r; 
A special  case t h a t  should be mentioned here i s  t h a t  of a system 

with y = 0, which i s  p rac t i ca l ly  the  same as the  so-called second-order 
velocity-control system of reference 4. The system equation i s  given by 

e"' + 2De" + e '  = -N sgn F (27) 

The newphase var iables  a re  given by 

El = e" 

E2 = e '  

J E3 = e'' + 2De' + e 

and as functions of t i m e  by 

W 
1 
3 
8 

. 

These solutions can be obtained from equations (20) t o  (22) by a l imi t ing  
process; however, it i s  simpler t o  derive them d i r ec t ly  from equation (27).  

The system behavior can be bes t  observed by p lo t t i ng  the  project ions 
of t he  t ra jectory i n  the  E1E2 plane and i n  the  E3d plane, which i s  
perpendicular t o  the  
( f i g s .  3(a) and 3 ( b ) ) .  The new coordinate d i s  a l i nea r  combination of 
E 1  and E2. I n  the  E3d plane the  switching plane appears as a s t r a igh t  
l i n e .  Additional diagrams showing E3 as a function of t i m e  ( f igs .  3 (c)  
and 3 (d ) )  proved t o  be very useful .  

E1E2 plane and a l so  t o  the  switching plane 

Projection of t ra jec tory  in to  E1E2 plane.- A s  can be seen from equa- 
t ions  (20) and (21) o r  (29) and ( 3 O ) ,  the  project ion of the t ra jec tory  in to  
the  E1E2 plane i s  composed of portions of logarithmic sp i r a l s  around two 
centers  N and ( - N )  (see a l so  r e f .  4, p. 24) .  Which center an a rc  belongs 
t o  depends on the  sign of the switching function F. An example of such a 
projection on the E1E2 plane i s  given i n  figure 3(a) ,  where P i  and P2 
a r e  switching points .  The t i m e  i s  measured by the  angle subtended by an 
arc  around the  center.  
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Projection of t ra jec tory  in to  E3d plane.- The switching plane 
F = 0 and the E1E2 plane in te rsec t  i n  a s t r a igh t  l i n e .  The coor- 
dinate  axis d ( f igs .  2 and 3(a)) i s  perpendicular t o  t h i s  intersec-  
t i on  l i n e .  Figure 3(b) shows the projection of a t ra jec tory  onto the  
E3d plane. 

The coordinate d depends on E 1  and E2 i n  the following way: 

2 11 E + Z2E2 
d = -ia 

The derivation of the above expression i s  qui te  similar t o  the deriva- 
t ion  given fo r  d l  i n  reference 4, page 57. 

The intersect ion of the switching plane with the  E3d plane i s  
given by 

E3  = K*d (33 1 

with 

D i a g r a m  of E3 as f h c t i o n  of 7.- It is  c lear  from equation (22) 
t h a t  f o r  pos i t ive  values of y the  phase var iable  E3  decays exponen- 
t i a l l y  toward N o r  (-N) depending on the  sign of the switching function 
as shown i n  f igure 3 (c ) .  7 = 0, equation (31) y ie lds  a 
l i nea r  dependence of E3  on T (see f i g .  3 ( d ) ) .  Correspondence between 
E3 and E 1  o r  E2 i s  given through T which can be measured by the 
angle subtended by the  d i f fe ren t  arcs  i n  the E1E2 plane. These rela- 
t ions  a r e  demonstrated by the following examples. 

For systems with 

Examples of System Behavior i n  Phase Space 

Three examples will be presented f o r  famil iar iz ing the  reader with 
the behavior of the third-order system without zeros and with a l i nea r  
switching function. 
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Example (1) i s  a system with y # 0 ,  described by: 

D = 0.2 

y = 1  

N =  2 

The switching coef f ic ien ts  are chosen as 

kl = 1 

k2 = 1.2 

The motion starts with the  values 

E10 = 0 

E20 = 5.0 

E30 = 5.0 

which correspond t o  

eo = 5.0 

eo’’ = o 

In f igure 4(a) the motion i s  shown by projections of i t s  t ra jec tory  
in to  the E1E2 plane and in to  the E3d plane. The E1E2 plane i s  
ro ta ted  fo r  ease of p lo t t ing .  The diagram E3(7) is  added t o  demon- 
s t r a t e  the decay of E3  with t i m e .  This diagram f a c i l i t a t e s  the design 
of the E3d projection of the t ra jec tory .  

The motion starts a t  PO, then proceeds around the s p i r a l  center (-N) 
u n t i l  i t  h i t s  the switching plane a t  PI as i s  shown i n  the  E3d plane. 
After passing P1 the motion proceeds around the other center N toward 
P2. A t  P2 it i s  obvious tha t  the motion cannot proceed any f a r the r  
because the switching command cannot be executed. 
one would a r r ive  a t  a s i tua t ion  which would demand a motion around the 

If one t r i e d  t o  switch, 

c 
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wrong center .  
however, there  are no i d e a l  systems, and the  ever-present t i m e  delay 
i n  the  contactor allows t h e  motion t o  proceed toward the  or ig in  i n  the  
switching plane as indicated i n  the  E3d plane. Details f o r  t h e  after- 
end-point cha t te r  motion i n  t h i s  third-order system are discussed i n  
t h e  appendix. 
t e m s  i s  discussed i n  d e t a i l  i n  reference 3 .  

An end point  fo r  the  motion of an i d e a l  system i s  P2; 

The after-end-point chat ter  motion f o r  second-order sys- 

Example (2)  i s  a system with 7 = 0. The e s sen t i a l  data  are 

D = 0.2 

r = o  
N = 2  

The coef f ic ien ts  of the  switching function are 

kl = 1 

k2 = 2 

The i n i t i a l  conditions are given by 

E10 = 0 

E20 = 5.0 

E30 = 3.0 

which correspond t o  

eo = 1.0 

eo' = 5.0 

eo'' = o 

A s  shc m i n  f igure  4(b) t he  motion proceeds s,m-,arly t o  t h a t  of t h e  
previous example except t h a t  E3 changes l i nea r ly  with T.  A t  P2 an 
end point i s  reached, and the  average motion proceeds according t o  the  
equation of  the  switching plane 

eav + kleav' + kze,," = 0 

I 
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toward the coordinate origin. That means 

eav - - Ce'0*25Tcos(~.66~ + E )  
where C and E are determined by e and e' at the end point. 

Example (3) is chosen to show what happens when the coefficients of 
the switching function F are not properly selected. The system data 
are 

D = 0.2 

7 = 0  

N = 2.0 

The coefficients of the switching function are 

kl = 0.8 

k2 = 0.2 

The initial values are 

or 

eo = -2.0 

eo" = o 

Figure 4(c) shows that the projection of the trajectory into the 
E1E2 
into the E3d plane does the same, however, somewhat more slowly. The 
final state is an oscillation of the system with considerable amplitude. 

plane tends strongly toward a limit cycle, and the projection 

c 

V 

. 

L A poor selection of kl and k2 may cause a system to oscillate 
or even diverge. The ratio of the initial values to N has a great 
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influence on the system behavior as can be concluded eas i ly  f'rm studying 
the  t r a j ec to r i e s .  

OPTIMUM RESPONSE OF TBIRD-ORDm CONTACTOR CONTROL SYSTEDS 

WITH LINEAR SWITCHING FUNCTIONS 

I n  the previous sect ion new phase coordinates were  introduced, and 
the behavior of systems was  studied by observing t h e i r  t r a j ec to r i e s  i n  
the phase space. The purpose of this section i s  t o  obtain optimum 
response i n  systems with l inear  switching functions. Optimum response 
f o r  zero-seeking systems and fo r  step-function input are discussed i n  
detail.  The r e s u l t s  obtained i n  t h i s  sect ion are used i n  the next sec- 
t i o n  fo r  studying quasi-optimum response. 

Optimum Response of Zero-Seeking Systems 

Zero-seeking systems are systems d e s i g n 4  t o  reduce an i n i t i a l  e r ro r  
t o  zero. 
der ivat ives  are  reduced t o  zero i n  minimum time. A sw3t.rhiw f i n c t i m  F 
which gives optimum response is called an optimum switching function. 
For second-order systems 
f o r  third-order systems 
The optimum switching curve fo r  second-order contactor control  systems 
has been extensively investigated by Bushaw ( re f .  5 )  and the  optimum 
surface f o r  third-order systems i s  under invest igat ion by Yin ( r e f .  6 ) .  

Their response w i l l  be called optimum i f  the  e r ro r  and i ts  

F = 0 represents a curve i n  the phase plane; 
i s  given by a surface i n  the phase space. F = 0 

The systems discussed i n  the present paper have l inear  switching 
f'unctions. 
given disturbance is real izable  with t h i s  arrangement. The answer i s  
affirmative i f  the  number of switchings i s  l imited t o  only two. 
the system starts f r a n  an initial point, switches twice on the optimum 
surface, and goes i n t o  the origin.  
of the switching plane is chosen so that  those two switching points on 
the surface and the  or igin are on this plane, optimum response can be 
real ized by a l inear  switching function. However, it is  obvious t h a t  
the optimum switching plane depends on the i n i t i a l  point of the 
t ra jec tory .  

It is  important t o  answer whether optimum response f o r  a 

Suppose 

Now i f  the  or ientat ion and the  slope 

It i s  qui te  easy t o  construct examples of the  optimum t r a j ec to ry  
i n  phase space. 
s t a r t i n g  fram the or igin on a zero trajectory,  and t o  proceed i n  nega- 
t i v e  t i m e .  
and 7 = 1. After the second switching point Pl, aqy point on the f i n a l  

It i s  convenient t o  plot the  t ra jec tory  backward, 

y = 0 Ekamples are given i n  figure 5 f o r  t he  cases of 
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,* 
s p i r a l  could be chosen as the  i n i t i a l  point. Once switching points P l  
and are chosen, it i s  possible t o  determine a plane which passes 
through these points and the origin. The coeff ic ients  kl and $ i n  

equation (16) determine the switching plane and can be obtained by 
solving a system of t w o  l inear  equations. 

I P2 

Optimum Response f o r  Step Input 

It is  a c m o n  technique t o  investigate the response of l inear  W 
1 
3 
8 

systems through the response t o  a s t ep  input. The systems t reated i n  
t h i s  report are nonlinear, and hence the  l a w  of superposition does not 
hold. However, it w i l l  be valuable t o  have the knowledge of step- 
function response because it shows the  response t o  a fast-changing input. 

Referring t o  equation (lo), it i s  noticed t h a t  the  right-hand s ide  
of the equation contains terms of input and i t s  derivatives.  
input, the following re lat ions hold: 

For s t ep  

x = xo = Constant ( 3 5 )  

and 

Thus, equation (10) becomes 

e'"+ ( y  + m)e"  + (w + 1 ) e '  + 7e = 7x0 - N sgn F (37 )  

As is seen, equation (37) has a term 7x0 on the  right-hand s ide.  
Previous investigations, especially Lindberg's, have sham t h a t  s t a b i l i t y  
of such systems can be expected only fo r  

17x01 < IN1 ( 3 8 )  

b e  can understand t h i s  immediately. The existence of 7x0 i n  equa- 
t i o n  (37)  means t h a t  the s p i r a l  centers 
down by 7x0. The system f a i l s  i f  l7xol i s  bigger than N. 

This sh i f t ing  e f f e c t  can be removed by feeding the input x i n t o  
thc controlled system d i r ec t ly  as shown i n  figure 6. 
the input removes the sh i f t ing  term yxo and m a k e s  the  system capable 
of handling any s ize  of s tep  input theoret ical ly .  The forward feeding 
of has been applied t o  a l l  systems described i n  the  present paper, 
although it has t o  be borne i n  mind t h a t  the system parameters are not 

N (-N) are sh i f ted  up or 

This feeding of 

x 



h 

c 

r 

always qui te  constant. 
such t h a t  yx i s  much greater  than N fo r  the sake of the s t a b i l i t y  
of the system. For systems having 7 equal t o  zero, t h i s  forward 
feeding of x i s  not  required.  

Thus, it i s  no t  advisable t o  design a system 

Graphical Determination of Optimum Switching Plane 

fo r  Step Input 

For systems with forward feeding of x, the response t o  s tep inputs 
i s  the same as for  zero-seeking systems with i n i t i a l  e r ro r  but no i n i t i a l  
e r ro r  der ivat ive and no i n i t i a l  error  acceleration. Therefore, t ra jec to-  
r i e s  can be traced backward as deyr ibed  earlier. 
given by eo f 0, e; = 0, and eo = 0 o r  E10 = 0, EX) = yeo, and 
E30 = eo. This means t h a t  fo r  7 = 0 the  i n i t i a l  values E10 and E20 
a r e  both zero, or  t ha t  i n  the E1E2 plane the i n i t i a l  point and the point 
which indicates  the end of motion a re  coinciding and are lying i n  the  
coordinate or igin.  Figure 7(a) shows projections of t r a j ec to r i e s  i n  the  
E1E2 plane f o r  a system with y = 0. Figure 7(b)  gives the  corresponding 
var ia t ion of E3 with time. Notice tha t  the p l o t  i s  done backward i n  
time. The t ra jec tory  P&P2O belongs t o  a ra ther  low step input. The 

larger  - -  input corresponds t o  a la rger  loop. 
P0P1P2O seems t o  indicate  a l i m i t  t o  the height of the s tep  input which 
s t i l l  can be followed up with two switchings; however, t h i s  i s  not the 
case. Consider f igure 7 (c )  which shows some in te res t ing  t r a j ec to r i e s .  
It i s  obvious t h a t  the t ra jec tory  portion can wind around (-N1) 
many times and s t i l l  be allowed t o  continue toward the  zero t ra jec tory .  
In  principle,  one could have i n f i n i t e  E3, which i s  equivalent t o  leaving 
the PI projection a t  (-N1). This fixes the a rcs  P1P2 and P20. For 
lesser ,  but ra ther  large,  heights the switching point P1 would l i e  very 
close t o  (-N1) and, therefore, one concludes tha t  f o r  ra ther  la rge  heights 
the  location of the switching points  P1 and P2 i n  the E1E2 plane 
changes very l i t t l e  and t h e i r  E3 coordinates are p rac t i ca l ly  fixed. 
This condition i s  equivalent t o  having k l  and k2 tend toward l i m i t  
values, because f o r  7 = 0 the  values 2 1 ,  22, and 23 are given by 
2 1  = k2 - 1, 22 = kl - 2D, and 23 = 1 and 2 1  and 22 depend on t h e  
location of PI and P2. 

The i n i t i a l  point i s  

A t  f i rs t  glance the  t ra jec tory  

P& 

The case D = 0 demands special  consideration. I n  t h i s  case the  
t ra jec tory  projection i n  the E1E2 plane degenerates t o  c i r c l e s .  
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Figure 7(d) s h m  t h a t  pl and p2 coincide. Repeated winding 

around (-N) allm large s t ep  inputs without any switching. 

These last considerations are  very in te res t ing  f o r  determining limit 
values for kl 
the r a t i o  X ~ / N  too large, as was mentioned e a r l i e r .  

k2j however, i n  pract ice  one should not t r y  t o  make 

I n  f igure 7(e)  t r a j ec to r i e s  are  sham f o r  systems with 7 # 0. 
I n  t h i s  case the i n i t i a l  point  l ies on the E2 axis. Switching points 
have t o  be chosen such t h a t  

nation of an optimum path i n  the  E1E2 
and-error method with the diagram of E3 against  T as es sen t i a l  help. 

E20 = 7 3 0 .  This means t h a t  the  determi- 

plane can only be done by a trial- 

Simulation of Systems on Analog Camputer 

. 
e 

W 
1 

Details of the simulation on the analog cmputer  are given i n  f i g -  
ure 8. The wiring i s  complete i n  the sense t h a t  variable inputs can be 
studied. Since El, E2, and 3 are  only auxi l ia ry  variables,  it i s  

sa t i s fac tory  t o  have e, e ' ,  and e"; however, f o r  comparison with the  

spec ia l  arrangement f o r  obtaining 

I 

theore t ica l  work it i s  desirable  t o  see against T. Therefore, a I 

3 = e + 2De' + e" is  made. 

It is  possible t o  determine an optimum set of 5 and Q on the  

computer by observing the responses on an oscilloscope and by diagrams 
drawn by a pen recorder. When projections on the  E1E2 plane are watched 

i n  the oscilloscope, %(T) i s  a l so  observed; the coef f ic ien ts  kl 

and are  varied u n t i l  optimum response i s  obtained. 

In  f igures  g(a) and g(b) the optimum values of kl and k2 f o r  

d i f fe ren t  heights of input s teps  are given f o r  systems with 
and 7 = 1, respectively, and D = 0.2. Also, values obtained by the 
graphical method are given i n  the same f igures .  It is  apparent t h a t  the  
values taken by the two methods l i e  close together, proving the  accuracy 
of simulation. From now on a l l  the  d a t a  t o  be taken w i l l  be obtained by 
simulation. 

7 = 0 

The height of the input s tep i s  l imited t o  a region 
because, as  mentioned e a r l i e r ,  it i s  not recommended t h a t  systems be 
designed for a higher l eve l  input.  

0 < xo N < 4 I 
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For the reader who compares these r e s u l t s  with those i n  reference 3 ,  
the following remarks w i l l  be helpful. The k coeff ic ients  ( k l  and 

k2) appearing i n  f igure  28 of reference 3 are  defined f o r  a system i n  
which a d i f f e ren t  time scale i s  used. The values of k have t o  be 
normalized t o  see the correspondence. 
s t a t e s  t h a t  

Equation (129) of reference 3 

where 5 i s  the  damping r a t i o ,  R is the  na tura l  frequency of the undamped 
third-order system, and vra 
controlled process and # i s  the switching function. Upon using the fo l -  
lowing set of transformations (subscript 

i s  the  runaway ve loc i ty  of the third-order 

L r e f e r s  t o  the notations used 
i n  r e f .  3 )  

i n  the above equation 
klLQ = kl and kaQ2 

one can derive equation (27). It is  obvious t h a t  
= 5. 

Dependence of Coefficients kl and 5 on Height of Step Input 

f o r  V a r i o u s  System Characterist ics D and 7 

It is h a m  t h a t  the equation of motion of the uncontrolled air- 
frame changes i t s  constants D aod 7 as the speed of flight changes. 
The value of D could even be negative f o r  pa r t i cu la r  speeds. Since 
it i s  one of the  purposes of this investigation t o  design a s tab le  con- 
t r o l  system with a linear switching f'unction, the dependence of opthum 
sets of kl and $ values upon the frame constants D and 7 for 
various s t ep  inputs have been investigated. 

Figure g(c)  shows the var ia t ion  of kl a& 5 with var ia t ion  of 
step input with D as parameter for systems with 7 = 0. As mentioned 
e a r l i e r ,  kl and $ tend toward l lmit  values with increasing xg/N 
r a t i o  f o r  posi t ive values of D (approaches are osci l la tory,  see 
r e f .  3 ) .  Hawever, a similar consideration shows t h a t  f o r  negative 
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values of D both constants w i l l  tend toward i n f i n i t y  with increasing 
s t e p  height. 

Figure 9(d) shows the var ia t ion  of kl and % i n  the same way  
It should be noted t h a t  larger  s tep  heights f o r  systems with 

demand higher values of kl and k2 with decreasing D. mere  seems 
7 = 1. 

t o  be for  each D 
f o r  the k i s  s t a r t i ng .  Thus f a r  no simple c r i t e r i o n  f o r  t h i s  break- 
away step height has been found. 

a par t icu lar  s tep  height at  which a s teep increase 

W 
I n  figure 9 (e )  the influence of d i f f e ren t  values of 7 f o r  fixed 1 

D = 0.2 on the magnitudes of optimum kl and k2 i s  shown. Fram f ig -  3 
8 ure 3(c)  it could be expected t h a t  the value of 

ence on kl and 5. Since 7 determines the slope of the  E3(T) 

curve, one might consider it understandable t h a t  an increase of 7 ac ts  
as an increase of N. This agrees with the appearance of the  curves 
f o r  7 = 2 when cmpared with those f o r  7 = 1 i n  f igure g (e ) .  

7 has a strong in f lu -  

It has been sham i n  figures g(c) ,  9(d),  and 9(e) t h a t  the var ia t ions 
of kl and % are qui te  large f o r  higher levels  of input, especial ly  I. 

f o r  the negatively damped case. It can be concluded t h a t  the  use of a 
fixed set  of values of k should be l imited t o  a lower l e v e l  input.  e 

QUASI-OPTIMUM RESPONSE O F  TBIRD-ORDER CONTACTOR 

CONTROL SYSTEMS To STEP INPUTS 

The purpose of the present sect ion i s  t o  study the response of 
systems with a fixed s e t  of kl and 5 selected frm the da ta  from 
the previous section, i n  which the var ia t ions of optiIIIUm switching coef- 
f i c i en t s  kl and k2 for s tep  inputs were investigated.  The constants 

D and y of the systems under control  are  varied. 

A third-order contactor control system with a fixed switching plane 
could give an optimum response f o r  a pa r t i cu la r  height of s tep  or a par- 
t i c u l a r  i n i t i a l  disturbance. For steps or in i t ia l  points close t o  t h a t  
s tep  or i n i t i a l  point the respome of the system w i l l  be qui te  close t o  
optimum. Such response will be cal led quasi-optFmum response. An adap- 
t i v e  system should give quasi-optimum response f o r  various heights of s tep  
input.  8, 

J 



21 

Response of Systems With Fixed D f o r  

61 
1 
3 
9 

Various Heights of Step Input 

As i s  seen i n  f igure g(c), variations of kl and k2 are ra ther  

s m a l l  for D = 0.2. I n  such a case a medium set  of kl and k2 i s  

expected t o  give gocd response fo r  various heights of steps.  s e t  
used here is  

kl = 1.00 

k2 = 0.37 

The r e su l t s  are found t o  be fairly gocd for  input amplitudes 

I n  figures i C ( a )  and iO(b) responses are given for a system with 
D = 0.2 and y = 0. Error e and the phase variable E, = e + 2De' + e" 

are plot ted for two s t ep  inputs xg/N = 20/25 and xo/N = 80/25. I n  
both cases there  are two es sen t i a l  switchings and a s l igh t  cha t te r  toward 
the end of the motion. 

1 

The next example is  an interest ing t e s t  case because the  uncontrolled 
system i s  negatively damped. The selection of the  values of k is  
essent ia l ly  determined by the stabi1i-b. of the controlled system. Fig- 
ures 1O(c) and lO(d) show responses f o r  a system with 
and coeff ic ients  kl = 1.30 and k2 = 0.93. For XO/N = 40/25 an end 
point is  reached too fast, and for 
l a tory .  Larger values of k would diminish the osci l la t ion,  but  t he  
response would be slower and far fran optimum. 

D = -0.2 and 7 = 0 

xo/N = lOO/25 the response is  osci l -  

The th i rd  test  r w ~  i s  for systems with 

k2 = 0.45. 

7 # 0. I n  figures l O ( e )  
and 10(f) responses are sham f o r  a system with 
kl = 1.70, and 

an end point with s l i gh t  chatter.  
the wide range of s tep  heights investigated and t h e i r  influence on 
and k2 (see f i g .  9(b)) are considered. 

D = 0.2, 

The responses are sa t i s fac tory  when 
kl 

7 = 1, 
mere are essent ia l ly  two switchings, reaching 
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It i s  sham i n  these examples t h a t  i n  order t o  obtain quasi-optimum 
response fo r  various inputs the l eve l  of input should be smaller than the  
restoring force N. L' 

Response of Systems With Varied D and Fixed Switching 

C o k i c i e n t s  t o  Step Inputs 

As mentioned ear l ie r ,  airframes change t h e i r  coeff ic ients  with the 
speed of f l i g h t .  
which operate sa t i s f ac to r i ly  under such conditions. 

Therefore, it i s  important t o  design control  systems 

The controlled system must be s tab le  a t  a l l  times and must give 
good responses. These two requirements determine the  choice of t he  
switching plane; therefore, there  w i l l  be a campromise i n  any case. 

The f i r s t  example i s  given i n  f igures  lO(g) and 10(h).  Responses 
a re  recorded for a system with 7 = 0 under two extreme conditions, 
D = 0.4 and D = -0.2. The values of kl and k2 are  chosen t o  be 

a l i t t l e  la rger  than the average of t he  optimum values of  kl and k2 
fo r  each case. The responses seem t o  be f a i r l y  good for both cases. 

The second example ( f igs .  1 O ( i )  and l O ( j ) )  i s  a similar t es t  for a 
system with 7 = 1. m e  response i s  a l i t t l e  worse than i n  the  pre- 
ceding example, as can be expected frm figure 9(d) .  
optimun values of k i s  bigger f o r  t h i s  system. 

The var ia t ion  of 

RESPONSE OF QUASI-OPTIMUM SYSTEMS TO TIME-VARYING INPUT 

The study of the response t o  step inputs was only a m e a n s  t o  test  
systems i n  a simple way.  
fast  changing input. 
systems fo r  t h e i r  responses t o  more general time-varying inputs. 

It shows the react ion of systems t o  a very 
However, it i s  necessary t o  t e s t  the quasi-optimm 

An optimum system should follow the  input with minimum instantaneous 
e r ror  a t  a l l  times. This i s  a rather  s t r i c t  requirement, and an analyt- 
i c a l  treatment of t h i s  problem i s  very d i f f i cu l t .  Contactor systems can 
follow a varying input bes t  when working most of the t i m e  i n  the cha t te r  
region. This implies t h a t  frequencies of t he  input s igna l  have t o  be 
lower than the chat ter  frequency, as discussed i n  reference 3 .  

The behavior of systems with fixed switching coefficients w a s  
studied for  sinusoidal and for  i r regular  inputs. 
the  advantage tha t  t h e i r  derivatives can be obtained without using 

Sinusoidal inputs have 

W 
1 
3 
8 
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d i f f e ren t i a to r s .  
input because no instrumentation for producing a t ru ly  "randam" input 
w a s  a t  hand when these experiments were done. 

The term 'lirregu1ar" input i s  used insteaii of randam 

Sinusoidal Input 

A sinusoidal wave x = xo cos wT i s  generated on the same ccmputer 
board as t h a t  used fo r  other inputs and is used as input s ignal .  
der ivat ives  are obtained at the  same time. 

The 

The kl and k2 values are selected f o r  the maximum value of 1x1, 
t h a t  is, the amplitude of the cosine wave, because the system should be 
pulled i n t o  the input s igna l  as f a s t  as possible. The chat ter  frequency 
depends on the  time delay i n  the  contactor (ref. 3 ) .  In  the present 
study time delay was minimized by using diodes a s  switching devices. 

Figure 11 s h m  the r e s u l t s  of studying responses to sinusoidal 
inputs fo r  systems with D = 0.2 and 7 = 0 and 7 = 1. The maximum 
e r ro r  at steady s t a t e  increases slowly with the  frequency of the  input 
arid j z q s  suddenly Then the maximum local  acceleration of the iriput 
becmes too big (breakdown frequency, see r e f .  3 ) .  It is evident t h a t  
the system with 7 0 i s  iiifel3.oi= tcj Gist witn 7 = 0. 

Figures 12(a) t o  12(d) present the response of systems with varying 
parameter D. The r e a l  pole i s  fixed' 7 = 0 i n  figures 12(a) and 12(b) 
anti y = 1 i n  figures 12(c) 1 2 ( d j .  m e  stew-state e r ro r  i s  a a z -  
ingly small i n  both cases. It i s  worth noticing tha t  the systems do not 
have any phase s h i f t ,  which is inherent i n  l inear  systems. After a s m a l l  
t rans ien t  the system follows the input s igna l  closely, with a stew- 
s t a t e  e r ro r  en t i re ly  due t o  the chatter of the contactor. 

Another example i n  which the parameter 7 i s  varied is  given i n  
The steady-state peak-to-peak e r ro r  seems t o  f igures  12(e) t o  12(g). 

increase with 7, which cannot be quite explained i n  the  present stage 
of investigation. 

Irregular Input 

An i r regular  time-varying input w a s  fed i n t o  the system. The 
i r regular  input i s  a kind of modified saw-tooth curve. Rather large 
e r rors  have t o  be expected near the points of abrupt change of slope 
where the second derivative xl' 
of the d i f f e ren t i a to r s  become noticeable. 

is rather large and the imperfections 
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As seen frm equation (lo), the  higher der ivat ives  of x may 
reinforce or weaken the influence of the term N sgn F, which i s  equiv- 
a len t  t o  a s h i f t  of the s p i r a l  centers i n  the  
o r  unfavorable way. 

E1E2 plane i n  a favorable J 

The tes t  runs were performed with systems having varying parameters 
D and 7 .  These are 

7 = 0, N = 25, D = -0.2, 0, 0.2, 0.4 

= 1, N = 25, D = -0.2, 0, 0.2, 0.4 

D = 0.2, N = 25, 7 = 0, 1, 2 

The switching coeff ic ients  kl = 1.30 and kg = 0.30 are used. The 
values of  these coeff ic ients  are primarily chosen f o r  the sake of the  
s t a b i l i t y  of the systems. 
systems, and same of them are shown i n  figure 13. 

The r e s u l t s  are qui te  a l ike  f o r  a l l  the  

This random input should s t i l l  be investigated i n  greater  d e t a i l .  

P R E L I M I N A R Y  E X T E N S I O N  TO SYSTEMS WITH ZEROS 

I n  the preceding sect ions it w a s  assumed t h a t  the t ransfer  function 

It is the purpose of t h i s  sect ion t o  present same preliminary 
of the  third-order system has two cmplex poles and one r e a l  pole, but  
no zeros. 
considerations on the systems with zeros. The phase-space coordinates 
El, E2, and 5 as defined i n  equations (l7), (18), and (19) are used 
f o r  a theoret ical  descr ipt ion of the motion of such general  systems, and 
a l inear  switching function i s  assumed. 

The third-order system with zeros i s  presented by equation (1). 
Follaring the  considerations of the sect ion "Equations of Third-Order 
Systems" t h i s  equation can be wri t ten i n  the following form: 

Y"' + ( 7  + 2D)y" + (2Dy + l ) y  + yy = b26" + b16' + 6 (39) 

where 

and 

6 = N sgn F 

F = e + kle' + k2e" 

W 
1 
3 
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. 
Equation (39) can be rewritten in a more convenient form by using 
and x instead of y 

e 

e'"+ ( 7  + 2D)e" + (2D7 + l)et + ye 

= xt t t+  ( 7  + 2D)x" + (2D7 + 1)x' + p - b26" - b16' - 6 (41) 

For a zero-seeking system input 
equation (41) becomes simply 

x and its derivatives are zero and 

e"' + (7 + 2D)e" + (2Dy + 1)e' + 7e = -b26" - b16' - 6 (42) 

Equation (42) has the same solutions as those described earlier for 
the mth interval between switchings since 6 is a constant and its 
derivatives are zero in such an interval. 
of the contactor, the presence of the derivatives of 6 in equation (42) 
becomes significant. The value of 6 changes abruptly, which means that 
6 '  is equivalent to an impulse and 6", to a double impulse. Referring 
to eqzation (42) it should be noticed that to maintain the equality at 
the switching instant the derivative must contain a double impulse, 
and e'' must have an impulse when e' is changing abruptly. The equa- 
tion should be integrated over a short interval including the switching 
instant for finding these discontinuities. The process of this integra- 
tion is well explained in reference l. If the switching instant is 
called T = 0, the integration stretches from T = -A/2 to A/2, with 
A 

But at the instant of switching 

e"' 

tending toward zero in the limiting process. 

4 2  
lim 
A 4 0  -A/2 

[e"'+ ( 7  + 2D)e" + (2Dy + 1)e' + re]d~ 

4 2  

A+O -42 
= lim [ (-bg6" - b16' - 6 ) d ~  (43) 

or 

where A1 signifies a discontinuity, 4 an impulse, and A* a combina- 
tion of both. A double integral shows the discontinuity in e' at the 
switching instant: 

. 
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+ (7 + 2D)e" + (2D7 + l)el + 
A+O 

or 

This shows the presence of a discontinuity in e'. Equation (45) is sub- 
stituted into equation (44) to get the abrupt changes in e": 

It is seen that the above expression contains an impulse 
important result is the discontinuity of 
term b246' 
The discontinuity in e" at switching is given by 

6 ' ;  but the .. 
e"' at switching, and the last 

is not significant for the construction of the trajectory. . 

Therefore, the motion of the system in the error-phase space can be con- 
structed as in the cases without zeros except that there is a discontinu- 
ity in e" and e' at every switching instant. 

In case the transfer function has only one zero, which means that 
e", but no discontinuity in b2 = 0, there is still a discontinuity in 

e' at switching. 

The switching function F = e + kle' + k2e" has discontinuities of 
first and second order for the general case (b2 f 0; bl f 0), and a first- 
order discontinuity only if b2 = 0. The derivative dF/dT is discontin- 
uous at switchings, even if the value kg = 0 should be chosen. It means 
that end points and after-end-point chatter may oc'cur even in this special 
case. 

A detailed study of such systems is being carried out at this time 
but is not reported in the present paper. 
of the control of systems with zeros w i l l  be mentioned. 

Here only some special features 

c 

r )  
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Figure 1 4  shows the behavior of F near switching points f o r  the  
case b2 = 0. L e t  a posi t ive F i n  f igure 1 4  approach zero. A t  zero 
a switching command i s  given, and immediately, f o r  posi t ive b l  and k2, 
F t r ies  t o  jump back t o  a f i n i t e  posit ive value. However, the  point ST 
can be reached only if a t  t h i s  t i m e  6 actual ly  changes from N t o  ( - N ) .  
Since a t  ST the  value F > 0 exists,  6 cannot be negative. In  other 
words, every zero point of F reached on a regular t ra jectory proves t o  
be an end point fo r  an ideal system. If a delay i n  executing the switching 
command i s  assumed, the  broken curve represents the  behavior of F. The 

W jumping F creates a new switching point whose command will be followed 
1 again with a delay. The necessary jump creates  a th i rd  switching point,  
3 and so on. It becomes obvious t h a t  the f i r s t  zeroing of F starts a 
9 cha t te r  motion. The motion will be determined by the average value of 6 

i n  t h i s  cha t te r  region. If t h i s  should be zero, uncontrolled chat ter  w i l l  
occur. When 6av = 0, 6 stays a t  N and a t  (-N) f o r  equal amounts of 
t i m e .  A s  soon as 6av i s  no longer zero ( tha t  change occurs a t  about 71 
i n  f i g .  13), another type of chat ter  occurs. Actual examples (not included 
i n  t h i s  repor t )  show t h a t  f o r  b l >  0 and k2 > 0 the  motion starts on a 
regular t ra jectory.  A t  the  very f i r s t  point where F = 0, uncontrolled 
cha t te r  motion begins. Some t i m e  l a te r ,  t h i s  changes t o  controlled cha t te r  
and f i n a l l y  changes again t o  uncontrolled chat ter ,  which then leads t o  a 
t i ny  l i m i t  cycle around the  or igin of the phase space. The dimensions of 
t h i s  l i m i t  cycle depend en t i re ly  on the imperfections of the  system ( t i m e  
delay, threshold, dead-zone). 

I n  the  case of b l >  0, k2 < 0 the  jump occus i n  the other direc- 
t i on  (see f i g .  16), and the motion proceeds without cha t te r .  

The cases with b2 f 0 and bl f 0 are more complicated since 

However, one can choose kl and k2 or ,be t te r , the  r a t i o  (kl/k2) so 
t h a t  AlF = 0. This happens i f  the following r e l a t ion  holds: 

9 = ( 7  + 2D) - - b l  

k2 b2 
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Whether t h i s  i s  a good choice s t i l l  has t o  be investigated, particu- 
larly since one has t o  count on a controlled system whose coeff ic ients  
b l ,  b2, D, and 7 m a y  change during operation. 

It remains t o  be determined whether one i s  ju s t i f i ed  i n  using a 
switching function which has discont inui t ies .  It i s  obvious t h a t  f o r  
systems with zeros, switching functions of t he  type 
generally w i l l  be discontinuous. However, by feeding 6 back i n t o  the 

F = e + kle' + k2e" 

switching f'unction, t h a t  is, forming a function Fn 

F* = e + kle' 

such discont inui t ies  can be avoided. 

+ k2eI' + f ( 6 )  

L 

W 
1 
3 

Whether t h i s  is  an advantage f o r  8 
obtaining a fast follow-up with s m a l l  e r rors  s t i l l  has t o  be investigated.  

Stanford University, 
Stanford, Calif.,  January 31, 1959. 
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APPENDIX A 
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MOTION AFTER AN END POINT I N  PHASE SPACE 

As has been indicated i n  f igu re  4(a) ,  the system creeps toward the  
or ig in  after an end point i f  a small time delay is present a t  the con- 
tac tor .  
of the switching plane 

The average motion during this time i s  governed by the  equation 

End points occur only i f  

i n  the slope of dF/dr at F = 0 may not allow a continuation of the  
motion i n  an ideal system. Posit ive k l  is  advised f o r  ant ic ipat ing 
f'uture changes of e. Therefore, only solutions of 

k;! > 0, because i n  t h i s  case the discont inui ty  

f o r  kl > 0 and k2 > 0 have t o  be considered. 

The equation (Al) may be writ ten 

and the solutions are 

hlr h2r e = Ale + %e 

wi th  

For 

there  i s  a double root.  

k12 = 4% 



If k12 > 4k2, there  a re  two r e a l  roots  and f o r  k12 < kk2 there  
.. 

are two conjugate complex roots .  
the  case which occurs, f o r  instance, i n  the so-called "quasi-optimum" 
systems) a convenient p lo t  of E1 and E2 using sp i r a l s  could be done 
only i f  a new t i m e  unit were introduced: 

In  case of two complex roots  ( this  i s  the 

Then equation (Q) leads t o  

With p2 = k2, one obtains 

de 2 
d eav + 3 E & + e a v =  o 

dT* 
dT*2 k2 

or 

where 

+ eav = 0 
dT* 

W 
1 
3 
8 

In  phase planes whose axes form the angle (x  - a") with 
with each other, phase t r a j ec to r i e s  of the  average motion are represented 
by logarithmic sp i r a l s .  

cos a" = -Iyk 

The i n i t i a l  conditions for  the s p i r a l  are given by the E1 and E2 
values a t  the end. point.  
new plane, the curve mst be transferred i n t o  the or ig ina l  
with cos u = -D. This i s  best done point by point. 

After having designed the average motion i n  the  
El - E2 plane 



., 

t 
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I n  the  case of real  roots, both roots will be negative. For real  
roots solut ion (A3)  allows one t o  write dam Mediately a convenient 
r e l a t ion  between E1 and E2. With 

and 

one obtains 

= Clhle hlr + C2h2e A27 
'1, 

By eliminating T 
E1 - E2 t ra jec tory  becanes 

from these t w o  expressions, the equation fo r  the  

The following example shows the construction of the af'ter-end-point 
motion i n  the phase space: 

L e t  the  system be determined by N = 25, D = 0.2, 7 = 0, kl = 1.0, 
and k2 = 0.5. 

The i n i t i a l  conditions are given as 

E10 = 0 

E20 = 20 

E = O  30 
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or 

e o = - 8  

eo' = 20 

eo'' = O 

The system reaches an end point a t  the point 

El = -13.4 

E2 = 7.2 

5 = -10.8 

or 

e = -0.3 

e '  = 7.2 

e" = -13.4 

The average motion during chat ter  i s  given by the d i f f e r e n t i a l  equation 

(A8) 

with the charac te r i s t ic  roots 

That means t h a t  the average motion is underdamped and t h a t  the use of 
logarithmic sp i r a l s  simplifies the plot t ing.  Therefore, equation (A8)  
is normalized by introducing 

7 = PT* 

with 

p = E  

The damping coeff ic ient  turns out t o  be D" = 0.707. 

W 
1 
3 
8 
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The t ra jec tory  of the average motion is  first drawn i n  a normalized 
phase plane by using a logarithmic spiral. and then denormalized point by 
point and plot ted i n  the or iginal  phase space. Figure 17 shuws the tra- 
jectory i n  the phase space. 
rapidly brought d a m  t o  the v ic in i ty  of the origin.  

As is seen f r a m t h e  figure, the system i s  
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4 t 3  

c - -  
= 
I 
L 

bi a 

Figure 2.- Illustration of phase space. 
L 

(a) Projection into E1 - E2 plane. 

Figure 3.- Projection of trajectory. 
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Switching 

E3 

N 

0 

-N 

(b) Projection i n t o  E3d plane. 

\ \ \ T  0 

( c )  Diagram of E3 against T; 

7 i o .  
(d)  Diagram of E3 against T; 

y = 0 .  

Figure 3. - Concluded. 
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(a)  Example (1); 7 f 0. 

Figure 4.-  Examples of motion in phase space. 
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(b) Example ( 2 ) ;  7 = 0. 

Figure 4. - Continued. 
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Y (a) y = 0 .  

Figure  5 . -  Example of optimum response. Trajectory was p lo t t ed  backward; 
N = 2.0 ;  D = 0 .2 .  
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(b) 7 = 1. 

Figure 5.-  Concluded. 
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(a) Projections in E1E2 plane. 7 = 0; D = 0 . 2 ;  N = 25 .  

Figure 7.- Optimum responses to step inputs of different heights. 
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Ei 

(c) Response to higher step inputs. 7 = 0 ;  D = 0 . 2 .  
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(d) Response where D = 0 and 7 = 0. 

Figure 7. - Continued. 
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(e) Response t o  step input with 7 fi 0 .  y E 1; D = 0.2; N = 25. 

Figure 7.- Concluded. 



48 

=x p 'x? 

-La. 
7 -  b . 

a, 
I 

E 
a, 
c, 
rn 
h rn 
U 
a, 
d 
r i  
0 
G 
c, 
G 
0 u 

M w 
k 
0 
b( 

L 1  

0 
0 

x 

I 



49 

0 

I z: 
3 

. 

Simulation 

Groph i cal ---- --- 

2 3 
I n p u t  s t e p  h e i g h t  x O / N  

I 4 

(a) 7 = 0 ;  D = 0.2 .  

Figure 9.- Optimum values of kl and k2 f o r  various s tep  inputs.  
N = 25.  
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(b) 7 = 1; D = 0 . 2 .  

Figure 9.- Continued. 
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( c )  7 = 0; various values of D. 

Figure 9. - Continued. 
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(d) 7 = 1; various values of D. 

Figure 9.- Continued. 
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I n p u t  s t e p  he igh t  xo/N 

( e )  Various values of 7 ;  D = 0 . 2 .  

Figure 9. - Concluded. 
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Figure 10.- Qiiaci-optimum response of third-order system. 
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Figure 10. - Continued. 
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Figure 10. - Continued. 
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Figure 10. - Continued. 
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Figure 10. - Concluded. 
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Figure 12.- Response of system t o  sinusoidal input .  
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Figure 12. - Continued. 
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Figure 12. - Continued. 
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Figure 12. - Concluded. 



Figure 13.- Response of system t o  i r regular  input.  
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Figure 1 4 . -  Behavior of F a t  switching points.  bl > 0; b2 = 0 ;  k2 > 0 ;  

A l F  = k2 Alerr = -blk2 AIS. 
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Figure 15.- Sketch of F (T)  i n  chatter region showing change from uncon- 
trolled chat ter  t o  controlled cha t te r .  

. 
Figure 16.- Sketch of F(T)  f o r  b l >  0 and k2 < 0. 
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P O  

(a) Projections into E1E2 plane and E d plane. 3 

Figure 17.- Illustration of after-end-point motion. N = 25; D = 0.2; 
7 = 0 ;  kl = 1.0; k2 = 0.5.  
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